Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40.411
Filtrar
1.
Curr Protoc ; 4(4): e1009, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572677

RESUMO

Expanding the genetic alphabet enhances DNA recombinant technologies by introducing unnatural base pairs (UBPs) beyond the standard A-T and G-C pairs, leading to biomaterials with novel and increased functionalities. Recent developments include UBPs that effectively function as a third base pair in replication, transcription, and/or translation processes. One such UBP, Ds-Px, demonstrates extremely high specificity in replication. Chemically synthesized DNA fragments containing Ds bases are amplified by PCR with the 5'-triphosphates of Ds and Px deoxyribonucleosides (dDsTP and dPxTP). The Ds-Px pair system has applications in enhanced DNA data storage, generation of high-affinity DNA aptamers, and incorporation of functional elements into RNA through transcription. This protocol describes the synthesis of the amidite derivative of Ds (dDs amidite), the triphosphate dDsTP, and the diol-modified dPxTP (Diol-dPxTP) for PCR amplifications involving the Ds-Px pair. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of Ds deoxyribonucleoside (dDs) Basic Protocol 2: Synthesis of dDs amidite Basic Protocol 3: Synthesis of dDs triphosphate (dDsTP) Basic Protocol 4: Synthesis of Pn deoxyribonucleoside (4-iodo-dPn) Basic Protocol 5: Synthesis of acetyl-protected diol-modified Px deoxyribonucleoside (Diol-dPx) Basic Protocol 6: Synthesis of Diol-dPx triphosphate (Diol-dPxTP) Basic Protocol 7: Purification of triphosphates Support Protocol 1: Synthesis of Hoffer's chlorosugar Support Protocol 2: Preparation of 0.5 M pyrophosphate in DMF Support Protocol 3: Preparation of 2 M TEAB buffer.


Assuntos
Aptâmeros de Nucleotídeos , DNA , Polifosfatos , Pirróis , Reação em Cadeia da Polimerase/métodos , Pareamento de Bases , DNA/genética , DNA/análise , Piridinas , Aptâmeros de Nucleotídeos/genética
2.
PLoS One ; 19(4): e0300285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564604

RESUMO

Previous research on stabilization methods for microbiome investigations has largely focused on human fecal samples. There are a few studies using feces from other species, but no published studies investigating preservation of samples collected from cattle. Given that microbial taxa are differentially impacted during storage it is warranted to study impacts of preservation methods on microbial communities found in samples outside of human fecal samples. Here we tested methods of preserving bovine fecal respiratory specimens for up to 2 weeks at four temperatures (room temperature, 4°C, -20°C, and -80°C) by comparing microbial diversity and community composition to samples extracted immediately after collection. Importantly, fecal specimens preserved and analyzed were technical replicates, providing a look at the effects of preservation method in the absence of biological variation. We found that preservation with the OMNIgene®â€¢GUT kit resulted in community structure most like that of fresh samples extracted immediately, even when stored at room temperature (~20°C). Samples that were flash-frozen without added preservation solution were the next most representative of original communities, while samples preserved with ethanol were the least representative. These results contradict previous reports that ethanol is effective in preserving fecal communities and suggest for studies investigating cattle either flash-freezing of samples without preservative or preservation with OMNIgene®â€¢GUT will yield more representative microbial communities.


Assuntos
DNA , Manejo de Espécimes , Bovinos , Humanos , Animais , Manejo de Espécimes/métodos , Fezes/química , DNA/análise , Etanol/análise , Sistema Respiratório , Genômica , RNA Ribossômico 16S/genética
3.
Genes (Basel) ; 15(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540432

RESUMO

In a mass fatality incident (MFI), effective preservation of tissue samples is the cornerstone for downstream DNA-based identification of victims. This is commonly achieved through freezing of tissue samples excised from bodies/fragmented remains which may be buried or stored in refrigerated containers. This may, however, not be possible depending on the nature of the MFI; in particular, during armed conflict/war where extended periods of electrical outages would be expected. The present study compared the effectiveness of long-term tissue preservation at ambient temperatures using two commercial products (non-iodized kitchen salt and a 40% alcoholic beverage) against a chemical preservative (Allprotect™ Tissue Reagent (Qiagen, Germantown, MD, USA)) and freezing at -20 °C. Bovine muscle tissue, used as a proxy for human tissue, was treated with the four preservation methods and sampled at six different time-points over a 24-month period. All four methods were able to preserve the bovine tissue, generally yielding STR-PCR (Short Tandem Repeat-Polymerase Chain Reaction) amplicons > 200 bp in size even at the end of 24 months. Gel electrophoresis, however, indicated that salt was more effective in preserving DNA integrity with high-molecular-weight DNA clearly visible as compared to the low-molecular-weight DNA smears observed in the other methods. This study also proposes a simple process for the rapid and low-cost preservation of tissue samples for long-term storage at ambient temperatures in support of post-incident victim identification efforts.


Assuntos
Incidentes com Feridos em Massa , Preservação de Tecido , Animais , Bovinos , Humanos , Temperatura , Preservação de Tecido/métodos , DNA/genética , DNA/análise , Manejo de Espécimes/métodos
4.
N Engl J Med ; 390(11): 984-993, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38477986

RESUMO

BACKGROUND: A next-generation multitarget stool DNA test, including assessments of DNA molecular markers and hemoglobin level, was developed to improve the performance of colorectal cancer screening, primarily with regard to specificity. METHODS: In a prospective study, we evaluated a next-generation multitarget stool DNA test in asymptomatic adults 40 years of age or older who were undergoing screening colonoscopy. The primary outcomes were sensitivity of the test for colorectal cancer and specificity for advanced neoplasia (colorectal cancer or advanced precancerous lesions). Advanced precancerous lesions included one or more adenomas or sessile serrated lesions measuring at least 1 cm in the longest dimension, lesions with villous histologic features, and high-grade dysplasia. Secondary objectives included the quantification of sensitivity for advanced precancerous lesions and specificity for nonneoplastic findings or negative colonoscopy and comparison of sensitivities for colorectal cancer and advanced precancerous lesions between the multitarget stool DNA test and a commercially available fecal immunochemical test (FIT). RESULTS: Of 20,176 participants, 98 had colorectal cancer, 2144 had advanced precancerous lesions, 6973 had nonadvanced adenomas, and 10,961 had nonneoplastic findings or negative colonoscopy. With the next-generation test, sensitivity for colorectal cancer was 93.9% (95% confidence interval [CI], 87.1 to 97.7), and specificity for advanced neoplasia was 90.6% (95% CI, 90.1 to 91.0). Sensitivity for advanced precancerous lesions was 43.4% (95% CI, 41.3 to 45.6), and specificity for nonneoplastic findings or negative colonoscopy was 92.7% (95% CI, 92.2 to 93.1). With the FIT, sensitivity was 67.3% (95% CI, 57.1 to 76.5) for colorectal cancer and 23.3% (95% CI, 21.5 to 25.2) for advanced precancerous lesions; specificity was 94.8% (95% CI, 94.4 to 95.1) for advanced neoplasia and 95.7% (95% CI, 95.3 to 96.1) for nonneoplastic findings or negative colonoscopy. As compared with FIT, the next-generation test had superior sensitivity for colorectal cancer (P<0.001) and for advanced precancerous lesions (P<0.001) but had lower specificity for advanced neoplasia (P<0.001). No adverse events occurred. CONCLUSIONS: The next-generation multitarget stool DNA test showed higher sensitivity for colorectal cancer and advanced precancerous lesions than FIT but also showed lower specificity. (Funded by Exact Sciences; BLUE-C ClinicalTrials.gov number, NCT04144738.).


Assuntos
Adenoma , Neoplasias Colorretais , DNA , Detecção Precoce de Câncer , Fezes , Imunoquímica , Lesões Pré-Cancerosas , Adulto , Humanos , Adenoma/diagnóstico , Neoplasias Colorretais/diagnóstico , DNA/análise , Detecção Precoce de Câncer/métodos , Fezes/química , Lesões Pré-Cancerosas/diagnóstico , Estudos Prospectivos , Doenças Assintomáticas , Colonoscopia , Sensibilidade e Especificidade , Testes Imunológicos/métodos , Imunoquímica/métodos
5.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542494

RESUMO

Body fluid identification plays a crucial role in criminal investigations. Because of their presence in many cases, blood and semen are the most relevant body fluids in forensic sciences. Based on antigen-antibody reactions binding unique proteins for each body fluid, serological assays represent one of the most rapid and highly specific tests for blood and semen. Currently, few studies have assessed the factors affecting body fluid identification by applying these assays. This work aimed to study the effect of different fabrics from clothes and time since deposition on identification through immunochromatographic tests for blood and semen, DNA isolation, and STR profiling from these samples. Body fluids were deposited on black- and white-dyed denim and cotton fabrics, and on leather. Afterward, blood and semen were sampled at 1 day, 30 days, and 90 days after deposition and identified by using the SERATEC® HemDirect Hemoglobin Test and the PSA Semiquant and SERATEC® BLOOD CS and SEMEN CS tests, respectively. Laboratory and crime scene tests presented similar performances for the detection of blood and semen stains on every tested fabric. No differences were found on band intensities between timepoints for all fabrics. It was possible to recover and identify blood and semen samples up to three months after deposition and to obtain full STR profiles from all the tested fabrics. Both body fluid STR profiles showed differences in their quality between 1 and 90 days after deposition for all fabrics except for black cotton for semen samples. Future research will expand the results, assessing body fluid identification on other substrates and under different environmental conditions.


Assuntos
Líquidos Corporais , Sementes , Humanos , Sementes/química , Líquidos Corporais/química , Secreções Corporais/química , Análise do Sêmen , DNA/análise , Saliva/química , Impressões Digitais de DNA
6.
Forensic Sci Int ; 357: 111971, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447344

RESUMO

Short tandem repeats (STRs) or microsatellites are short, tandemly repeated DNA sequences that involve a repetitive unit of 1-6 bp. DNA isolation and purification from a large number and often compromised samples gives problems to forensic labs for STR typing. Many of the conventional methods used in the isolation and purification of DNA from forensic samples are time consuming, expensive, hazardous for health and are often associated with greater risks of cross contamination. FTA® technology is a method designed to simplify the collection, shipment, archiving and purification of nucleic acid from a wide variety of biological samples. We report a new method for the direct STR amplification which can amplify STR loci from human foetal tissues spotted on FTA cards, bye-passing the need of DNA purification. The STR loci amplified by this method was compared with conventional method of STR profiling and was found absolutely matching. Therefore, this new method is demonstrated to be very useful for fast, less expensive and non- hazardous forensic DNA analysis.


Assuntos
Impressões Digitais de DNA , DNA , Humanos , Reação em Cadeia da Polimerase/métodos , Impressões Digitais de DNA/métodos , DNA/análise , Repetições de Microssatélites
7.
Colloids Surf B Biointerfaces ; 237: 113840, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508085

RESUMO

Giant vesicles (GVs) are used to study the structures and functions of cells and cell membranes. Electroformation is the most commonly used method for GV preparation. However, the electroformation of GVs is hindered in highly concentrated ionic solutions, limiting their application as cell models for research under physiological conditions. In this study, giant multilayer vesicles were successfully generated in physiological saline using a modified electroformation device by adding an insulating layer between the two electrode plates. The influence of the electric frequency and strength on the electroformation of GVs in physiological saline was explored, and a possible mechanism for this improvement was assessed. It has been shown that an insulating layer between the two electrodes can improve the electroformation of GVs in physiological saline by increasing the electrical impedance, which is weakened by the saline solution, thereby restoring the reduced effective electric field strength. Furthermore, macromolecular plasmid DNA (pDNA) was successfully encapsulated in the electroformed GVs of the modified device. This modified electroformation method may be useful for generating eukaryotic cell models under physiological conditions.


Assuntos
DNA , Solução Salina , Solução Salina/análise , Membrana Celular/química , Íons/análise , DNA/análise , Plasmídeos , Lipossomas Unilamelares/química
8.
J Nanobiotechnology ; 22(1): 55, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331774

RESUMO

BACKGROUND: Exosomes are nanoscale extracellular vesicles (30-160 nm) with endosome origin secreted by almost all types of cells, which are considered to be messengers of intercellular communication. Cancerous exosomes serve as a rich source of biomarkers for monitoring changes in cancer-related physiological status, because they carry a large number of biological macromolecules derived from parental tumors. The ultrasensitive quantification of trace amounts of cancerous exosomes is highly valuable for non-invasive early cancer diagnosis, yet it remains challenging. Herein, we developed an aptamer-carrying tetrahedral DNA (Apt-TDNA) microelectrode sensor, assisted by a polydopamine (PDA) coating with semiconducting properties, for the ultrasensitive electrochemical detection of cancer-derived exosomes. RESULTS: The stable rigid structure and orientation of Apt-TDNA ensured efficient capture of suspended exosomes. Without PDA coating signal amplification strategy, the sensor has a linear working range of 102-107 particles mL-1, with LOD of ~ 69 exosomes and ~ 42 exosomes for EIS and DPV, respectively. With PDA coating, the electrochemical signal of the microelectrode is further amplified, achieving single particle level sensitivity (~ 14 exosomes by EIS and ~ 6 exosomes by DPV). CONCLUSIONS: The proposed PDA-assisted Apt-TDNA microelectrode sensor, which integrates efficient exosome capture, sensitive electrochemical signal feedback with PDA coating signal amplification, provides a new avenue for the development of simple and sensitive electrochemical sensing techniques in non-invasive cancer diagnosis and monitoring treatment response.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Exossomos , Indóis , Neoplasias , Polímeros , Humanos , Microeletrodos , Exossomos/química , DNA/análise , Neoplasias/diagnóstico , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Limite de Detecção
9.
Sensors (Basel) ; 24(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38339489

RESUMO

In this work, we report a new concept of upconversion-powered photoelectrochemical (PEC) bioanalysis. The proof-of-concept involves a PEC bionanosystem comprising a NaYF4:Yb,Tm@NaYF4 upconversion nanoparticles (UCNPs) reporter, which is confined by DNA hybridization on a CdS quantum dots (QDs)/indium tin oxide (ITO) photoelectrode. The CdS QD-modified ITO electrode was powered by upconversion absorption together with energy transfer effect through UCNPs for a stable photocurrent generation. By measuring the photocurrent change, the target DNA could be detected in a specific and sensitive way with a wide linear range from 10 pM to 1 µM and a low detection limit of 0.1 pM. This work exploited the use of UCNPs as signal reporters and realized upconversion-powered PEC bioanalysis. Given the diversity of UCNPs, we believe it will offer a new perspective for the development of advanced upconversion-powered PEC bioanalysis.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Pontos Quânticos , Técnicas Eletroquímicas , DNA/análise , Hibridização de Ácido Nucleico , Limite de Detecção
10.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38396883

RESUMO

The presence of background DNA (bgDNA) can hinder the evaluation of DNA evidence at the activity level, especially when the suspect is expected to be retrieved due to their habitual occupation of the investigated environment. Based on real-life casework circumstances, this study investigates the prevalence, composition, origin, and probable transfer routes of bgDNA found on personal items in situations where their owner and person of interest (POI) share the same workspace. Baseline values of bgDNA were evaluated on the participants' personal items. Secondary and higher degree transfer scenarios of non-self DNA deposition were also investigated. The DNA from co-workers and co-inhabiting partners can be recovered from an individual's personal belongings. Non-self DNA present on the hands and deposited on a sterile surface can generate uninformative profiles. The accumulation of foreign DNA on surfaces over time appears to be crucial for the recovery of comparable profiles, resulting in detectable further transfer onto other surfaces. For a thorough evaluation of touch DNA traces at the activity level, it is necessary to collect information not only about DNA transfer probabilities but also about the presence of the POI as part of the 'baseline' bgDNA of the substrates involved.


Assuntos
Impressões Digitais de DNA , Tato , Humanos , DNA/genética , DNA/análise , Probabilidade
11.
Lab Invest ; 104(1): 100280, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345263

RESUMO

Formalin-fixed paraffin-embedded (FFPE) samples represent the cornerstone of tissue-based analysis in precision medicine. Targeted next-generation sequencing panels are routinely used to analyze a limited number of genes to guide treatment decision-making for advanced-stage patients. The number and complexity of genetic alterations to be investigated are rapidly growing; in several instances, a comprehensive genomic profiling analysis is needed. The poor quality of genetic material extracted from FFPE samples may impact the feasibility/reliability of sequencing data. We sampled 9 colorectal cancers to allow 4 parallel fixations: (1) neutral buffered formalin (NBF), (2) acid-deprived formalin fixation (ADF), (3) precooled ADF (coldADF), and (4) glyoxal acid free (GAF). DNA extraction, fragmentation analysis, and sequencing by 2 large next-generation sequencing panels (OCAv3 and TSO500) followed. We comprehensively analyzed library and sequencing quality controls and the quality of sequencing results. Libraries from coldADF samples showed significantly longer reads than the others with both panels. ADF-derived and coldADF-derived libraries showed the lowest level of noise and the highest levels of uniformity with the OCAv3 panel, followed by GAF and NBF samples. The data uniformity was confirmed by the TSO500 results, which also highlighted the best performance in terms of the total region sequenced for the ADF and coldADF samples. NBF samples had a significantly smaller region sequenced and displayed a significantly lower number of evaluable microsatellite loci and a significant increase in single-nucleotide variations compared with other protocols. Mutational signature 1 (aging and FFPE artifact related) showed the highest (37%) and lowest (17%) values in the NBF and coldADF samples, respectively. Most of the identified genetic alterations were shared by all samples in each lesion. Five genes showed a different mutational status across samples and/or panels: 4 discordant results involved NBF samples. In conclusion, acid-deprived fixatives (GAF and ADF) guarantee the highest DNA preservation/sequencing performance, thus allowing more complex molecular profiling of tissue samples.


Assuntos
Artefatos , DNA , Humanos , Fixação de Tecidos/métodos , Reprodutibilidade dos Testes , DNA/genética , DNA/análise , Formaldeído , Genômica , Inclusão em Parafina , Sequenciamento de Nucleotídeos em Larga Escala
13.
ACS Nano ; 18(8): 5998-6007, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38345242

RESUMO

Molecular diagnostics (MD) is widely employed in multiple scientific disciplines, such as oncology, pathogen detection, forensic investigations, and the pharmaceutical industry. Techniques such as polymerase chain reaction (PCR) revolutionized the rapid and accurate identification of nucleic acids (DNA, RNA). More recently, CRISPR and its CRISPR-associated protein (Cas) have been a ground-breaking discovery that is the latest revolution in molecular biology, including MD. Surface-enhanced Raman scattering (SERS) is a very attractive alternative to fluorescence as the currently most widely used optical readout in MD. In this Perspective, milestones in the development of MD, SERS-PCR, and next-generation approaches to MD, such as Specific High-Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK) and DNA Endonuclease-Targeted CRISPR Trans Reporter (DETECTR), are briefly summarized. Our perspective on the future convergence of SERS with MD is focused on SERS-based CRISPR/Cas (SERS-CRISPR) since we anticipate many promising applications in this rapidly emerging field. We predict that major future developments will exploit the advantages of real-time monitoring with the superior brightness, photostability, and spectral multiplexing potential of SERS nanotags in an automated workflow for rapid assays under isothermal, amplification-free conditions.


Assuntos
Ácidos Nucleicos , Análise Espectral Raman , Análise Espectral Raman/métodos , DNA/análise , Ácidos Nucleicos/análise , RNA
14.
Mol Ecol Resour ; 24(4): e13934, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38318749

RESUMO

Environmental DNA (eDNA) is an effective tool for describing fish biodiversity in lotic environments, but the downstream transport of eDNA released by organisms makes it difficult to interpret species detection at the local scale. In addition to biophysical degradation and exchanges at the water-sediment interface, hydrological conditions control the transport distance. A new eDNA transport model described in this paper considers downstream retention and degradation processes in combination with hydraulic conditions and assumes that the sedimentation rate of very fine particles is a correct estimate of the eDNA deposition rate. Based on meta-analyses of available studies, the particle size distribution of fish eDNA (PSD), the relationship between the sedimentation rate and the size of very fine particles in suspension, and the influence of temperature on the degradation rate of fish eDNA were successively modelled. After combining the results in a mechanistic-based model, the eDNA uptake distances (distance required to retain 63.21% of the eDNA particles in the riverbed) observed in a compilation of previous experimental studies were correctly simulated. eDNA degradation is negligible at low flow and temperature but has a comparable influence to background transfer when hydraulic conditions allow a long uptake distance. The wide prediction intervals associated with the simulations reflect the complexity of the processes acting on eDNA after shedding. This model can be useful for estimating eDNA detection distance downstream from a source point and discussing the possibility of false positive detection in eDNA samples, as shown in an example.


Assuntos
DNA Ambiental , Animais , DNA Ambiental/genética , DNA/genética , DNA/análise , Peixes/genética , Biodiversidade , Água/análise , Monitoramento Ambiental/métodos , Ecossistema
15.
Cancer Prev Res (Phila) ; 17(3): 119-126, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38224564

RESUMO

The multi-target stool DNA (mt-sDNA) test screens for colorectal cancer by analyzing DNA methylation/mutation and hemoglobin markers to algorithmically derive a qualitative result. A new panel of highly discriminant candidate methylated DNA markers (MDM) was recently developed. Performance of the novel MDM panel, with hemoglobin, was evaluated in a simulated screening population using archived stool samples weighted to early-stage colorectal cancer and prospectively collected advanced precancerous lesions (APL). Marker selection study (MSS) and separate preliminary independent verification studies (VS) were conducted utilizing samples from multi-center, case-control studies. Sample processing included targeted MDM capture, bisulfite conversion, and MDM quantitation. Fecal hemoglobin was quantified using ELISA. Samples were stratified into 75%/25% training-testing sets; model outcomes were cross-validated 1,000 times. All laboratory operators were blinded. The MSS included 232 cases (120 colorectal cancer/112 APLs) and 490 controls. The VS featured 210 cases (112 colorectal cancer/98 APLs) and 567 controls; APLs were 86.7% adenomas and 13.3% sessile serrated lesions (SSL). Average age was 65.5 (cases) and 63.2 (controls) years. Mean sensitivity in the VS from cross-validation was 95.2% for colorectal cancer and 57.2% for APLs, with specificities of 89.8% (no CRC/APLs) and 92.4% (no neoplasia). Subgroup analyses showed colorectal cancer sensitivities of 93.4% (stage I) and 94.2% (stage II). APL sensitivity was 82.9% for high-grade dysplasia, 73.4% for villous lesions, 49.8% for tubular lesions, and 30.2% for SSLs. These data support high sensitivity and specificity for a next-generation mt-sDNA test panel. Further evaluation of assay performance will be characterized in a prospective, multi-center clinical validation study (NCT04144738). PREVENTION RELEVANCE: This study highlights performance of the next-generation mt-sDNA test, which exhibits high sensitivity and specificity for detecting colorectal cancer and APLs. This noninvasive option has potential to increase screening participation and clinical outcomes. A multi-center, clinical validation trial is underway. See related commentary by Bresalier, p. 93.


Assuntos
Neoplasias Colorretais , Lesões Pré-Cancerosas , Idoso , Humanos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , DNA/análise , Detecção Precoce de Câncer , Fezes/química , Hemoglobinas/análise , Lesões Pré-Cancerosas/diagnóstico , Lesões Pré-Cancerosas/genética , Estudos Prospectivos , Sensibilidade e Especificidade , Pessoa de Meia-Idade
16.
Biochem Biophys Res Commun ; 696: 149488, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38219485

RESUMO

Enzymatic methyl-seq (EM-seq), an enzyme-based method, identifies genome-wide DNA methylation, which enables us to obtain reliable methylome data from purified genomic DNA by avoiding bisulfite-induced DNA damage. However, the loss of DNA during purification hinders the methylome analysis of limited samples. The crude DNA extraction method is the quickest and minimal sample loss approach for obtaining useable DNA without requiring additional dissolution and purification. However, it remains unclear whether crude DNA can be used directly for EM-seq library construction. In this study, we aimed to assess the quality of EM-seq libraries prepared directly using crude DNA. The crude DNA-derived libraries provided appropriate fragment sizes and concentrations for sequencing similar to those of the purified DNA-derived libraries. However, the sequencing results of crude samples exhibited lower reference sequence mapping efficiencies than those of the purified samples. Additionally, the lower-input crude DNA-derived sample exhibited a marginally lower cytosine-to-thymine conversion efficiency and hypermethylated pattern around gene regulatory elements than the higher-input crude DNA- or purified DNA-derived samples. In contrast, the methylation profiles of the crude and purified samples exhibited a significant correlation. Our findings indicate that crude DNA can be used as a raw material for EM-seq library construction.


Assuntos
Metilação de DNA , DNA , Biblioteca Gênica , Sequência de Bases , DNA/genética , DNA/análise , Clonagem Molecular , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sulfitos
17.
Anal Chem ; 96(5): 2068-2077, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38259216

RESUMO

Detection of nucleic acids from a single multiplexed and amplification-free test is critical for ensuring food safety, clinical diagnostics, and environmental monitoring. In this study, we introduced a mesophilic Argonaute protein from Clostridium butyricum (CbAgo), which exhibits nucleic acid endonuclease activity, to achieve a programmable, amplification-free system (PASS) for rapid nucleic acid quantification at ambient temperatures in one pot. By using CbAgo-mediated binding with specific guide DNA (gDNA) and subsequent targeted cleavage of wild-type target DNAs complementary to gDNA, PASS can detect multiple foodborne pathogen DNA (<102 CFU/mL) simultaneously. The fluorescence signals were then transferred to polydisperse emulsions and analyzed by using deep learning. This simplifies the process and increases the suitability of polydisperse emulsions compared to traditional digital PCR, which requires homogeneous droplets for accurate detection. We believe that PASS has the potential to become a next-generation point-of-care digital nucleic acid detection method.


Assuntos
Técnicas Biossensoriais , Aprendizado Profundo , Ácidos Nucleicos , Proteínas Argonautas/metabolismo , DNA/análise , Técnicas Biossensoriais/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos
18.
J Pharm Biomed Anal ; 240: 115943, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181558

RESUMO

The droplet digital Polymerase Chain Reaction (ddPCR) has garnered recognition for its distinctive attribute of absolute quantification. And it has found practical utility in age prediction through DNA methylation profiles. However, a prevalent limitation in current ddPCR methodologies is the restricted capacity to detect only two targets concurrently in most instruments, leading to high costs, sample wastage, and labor-intensive procedures. To address the limitations, a novel high-throughput ddPCR system allowing for the simultaneous detection of eight targets was developed. Through the implementation of a new 8-plex ddPCR assay, coupled with comprehensive linear regression analyses involving primers and probes ratios, diverse inputs of single CpG sites with distinct primers and probes, and varying plex assay configurations, stable DNA methylation values for four CpGs and stable measurement precisions for distinct multiplex systems were consistently observed. These findings pave the way for advancing the field of chemistry science by enabling more efficient and cost-effective methods. Furthermore, the comparative validation of ddPCR and SNaPshot demonstrated a remarkable concordance in results, and the system also displayed well in the field of various aspects, including species specificity, DNA input, and aged samples. In this study, the recommended input of bisulfite-converted DNA was determined to be 10-50 ng due to the double-positive droplets. Notably, the Pearson correlation coefficient squared values of four CpGs were 0.4878 (ASPA), 0.4832 (IGSF1), 0.6881 (COL1A1), and 0.6475 (MEIS1-AS3). And the testing set exhibited a mean absolute error of 4.5923 years, indicating the robustness and accuracy of the age-predictive model.


Assuntos
Metilação de DNA , DNA , Reação em Cadeia da Polimerase/métodos , DNA/genética , DNA/análise , Primers do DNA
19.
Analyst ; 149(4): 1050-1054, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38231135

RESUMO

We propose a mutant detection approach based on endonuclease IV and DNA ligase in combination with qPCR. The enzymes functioned cooperatively to facilitate PCR for low abundance DNA detection. We demonstrate that our approach can distinguish mutations as low as 0.01%, indicating the potential application of this strategy in early cancer diagnosis.


Assuntos
DNA , Ligases , Desoxirribonuclease IV (Fago T4-Induzido) , Mutação , DNA/genética , DNA/análise , DNA Ligases
20.
PLoS One ; 19(1): e0297164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38241246

RESUMO

Deer products from sika deer (Cervus nippon) and red deer (C. elaphus) are considered genuine and used for Traditional Chinese Medicine (TCM) materials in China. Deer has a very high economic and ornamental value, resulting in the formation of a characteristic deer industry in the prescription preparation of traditional Chinese medicine, health food, cosmetics, and other areas of development and utilization. Due to the high demand for deer products, the products are expensive and have limited production, but the legal use of deer is limited to only two species of sika deer and red deer; other wild deer are prohibited from hunting, so there are numerous cases of mixing and adulteration of counterfeit products and so on. There have been many reports that other animal (pig, cow, sheep, etc.) tissues or organs are often used for adulteration and confusion, resulting in poor efficacy of deer traditional medicine and trade fraud in deer products. To authenticate the deer products in a rapid and effective manner, the analysis used 22 deer products (antler, meat, bone, fetus, penis, tail, skin, and wool) that were in the form of blind samples. Total DNA extraction using a modified protocol successfully yielded DNA from the blind samples that was useful for PCR. Three candidate DNA barcoding loci, cox1, Cyt b, and rrn12, were evaluated for their discrimination strength through BLAST and phylogenetic clustering analyses. For the BLAST analysis, the 22 blind samples obtained 100% match identity across the three gene loci tested. It was revealed that 12 blind samples were correctly labeled for their species of origin, while three blind samples that were thought to originate from red deer were identified as C. nippon, and seven blind samples that were thought to originate from sika deer were identified as C. elaphus, Dama dama, and Rangifer tarandus. DNA barcoding analysis showed that all three gene loci were able to distinguish the two Cervus species and to identify the presence of adulterant species. The DNA barcoding technique was able to provide a useful and sensitive approach in identifying the species of origin in deer products.


Assuntos
Código de Barras de DNA Taxonômico , Cervos , Masculino , Bovinos , Feminino , Animais , Ovinos/genética , Suínos/genética , Filogenia , Cervos/genética , DNA/análise , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...